Spontaneous and evoked glutamate release activates two populations of NMDA receptors with limited overlap.
نویسندگان
چکیده
In a synapse, spontaneous and action-potential-driven neurotransmitter release is assumed to activate the same set of postsynaptic receptors. Here, we tested this assumption using (+)-5-methyl-10,11-dihydro-5H-dibenzo [a,d] cyclohepten-5,10-imine maleate (MK-801), a well characterized use-dependent blocker of NMDA receptors. NMDA-receptor-mediated spontaneous miniature EPSCs (NMDA-mEPSCs) were substantially decreased by MK-801 within 2 min in a use-dependent manner. In contrast, MK-801 application at rest for 10 min did not significantly impair the subsequent NMDA-receptor-mediated evoked EPSCs (NMDA-eEPSCs). Brief stimulation in the presence of MK-801 significantly depressed evoked NMDA-eEPSCs but only mildly affected the spontaneous NMDA-mEPSCs detected on the same cell. Optical imaging of synaptic vesicle fusion showed that spontaneous and evoked release could occur at the same synapse albeit without correlation between their kinetics. In addition, modeling glutamate diffusion and NMDA receptor activation revealed that postsynaptic densities larger than approximately 0.2 microm(2) can accommodate two populations of NMDA receptors with nonoverlapping responsiveness. Collectively, these results support the premise that spontaneous and evoked neurotransmissions activate distinct sets of NMDA receptors and signal independently to the postsynaptic side.
منابع مشابه
Single synapse evaluation of the postsynaptic NMDA receptors targeted by evoked and spontaneous neurotransmission
Recent studies indicate that within individual synapses spontaneous and evoked release processes are segregated and regulated independently. In the hippocampus, earlier electrophysiological recordings suggested that spontaneous and evoked glutamate release can activate separate groups of postsynaptic NMDA receptors with limited overlap. However, it is still unclear how this separation of NMDA r...
متن کاملUse-dependent AMPA receptor block reveals segregation of spontaneous and evoked glutamatergic neurotransmission.
Earlier findings had suggested that spontaneous and evoked glutamate release activates non-overlapping populations of NMDA receptors. Here, we evaluated whether AMPA receptor populations activated by spontaneous and evoked release show a similar segregation. To track the receptors involved in spontaneous or evoked neurotransmission, we used a polyamine agent, philanthotoxin, that selectively bl...
متن کاملPostnatal developmental alterations in the locus coeruleus neuronal fast excitatory postsynaptic currents mediated by ionotropic glutamate receptors of rat
Introduction: In the present work, spontaneous postsynaptic currents were assessed to investigate the postnatal development of excitatory postsynaptic currents in locus coeruleus neurons. Methods: In this study, AMPA and NMDA receptor-mediated spontaneous synaptic currents in the neurons of locus coeruleus were assessed using whole cell voltage-clamp recording during the first three weeks. ...
متن کاملSynaptically released glutamate activates extrasynaptic NMDA receptors on cells in the ganglion cell layer of rat retina.
NMDA and AMPA receptors (NMDARs and AMPARs) are colocalized at most excitatory synapses in the CNS. Consequently, both receptor types are activated by a single quantum of transmitter and contribute to miniature and evoked EPSCs. However, in amphibian retina, miniature EPSCs in ganglion cell layer neurons are mediated solely by AMPARs, although both NMDARs and AMPARs are activated during evoked ...
متن کاملAstrocytic control of synaptic NMDA receptors.
Astrocytes express a wide range of G-protein coupled receptors that trigger release of intracellular Ca2+, including P2Y, bradykinin and protease activated receptors (PARs). By using the highly sensitive sniffer-patch technique, we demonstrate that the activation of P2Y receptors, bradykinin receptors and protease activated receptors all stimulate glutamate release from cultured or acutely diss...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 28 40 شماره
صفحات -
تاریخ انتشار 2008